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tidyverts packages

tsibble

tsibble

Temporal data frames and tools
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tsibbledata

Diverse datasets for tsibble
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fable
Tidy forecasting
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fable.prophet

Interface to prophet forecaster for
fable
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feasts
Feature extraction and statistics

% @ O

tsibbletalk

Interactive crosstalk graphics for
tsibble
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tsibbles (time-series tibbles)

# A tsibble: 15,150 x 6 [1Y]

# Key: Country
Year Country
Index Key

1960 Afghanistan
1961 Afghanistan
1962 Afghanistan
1963 Afghanistan
1964 Afghanistan
1965 Afghanistan
1966 Afghanistan
1967 Afghanistan
1968 Afghanistan
10 1969 Afghanistan
# 1 15,140 more rows
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Other common time
indexes:

Annual
Quarterly
Monthly
Weekly
Daily
Sub-daily



Loading a CSV into tsibble

prison <- readr::read_csv('"data/prison_population.csv") |>
mutate (Quarter = yearquarter(date)) |>
select(-date) |>
as_tsibble(
index = Quarter,
key = c(state, gender, legal, indigenous)

# A tsibble: 3,072 x 6 [1Q]

# Key: state, gender, legal, 1indigenous [64]
state gender legal indigenous count Quarter
<chr> <chr> <chr> <chr> <db1> <qtr>

1 ACT Female Remanded ATSI ®@ 2005 Q1
2 ACT Female Remanded ATSI 1 2005 Q2
3 ACT Female Remanded ATSI 0@ 2005 Q3
4 ACT Female Remanded ATSI 0 2005 Q4
5 ACI Female Remanded ATSI 1 2006 Q1
6 ACT Female Remanded ATSI 1 2006 Q2



Time series patterns

* Trend: pattern exists when there is a long-term increase or decrease in the data.
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Time series patterns

pattern exists when a series is influenced by seasonal factors (e.g., the
quarter of the year, the month, or day of the week).
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Time series patterns

pattern exists when data exhibit rises and falls that are not of fixed
period (duration usually of at least 2 years).
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Seasonal vs cyclic

Differences between seasonal and cyclic patterns:
|. Seasonal pattern constant length; cyclic pattern variable length
2. Average length of cycle longer than length of seasonal pattern

3. Magnitude of cycle more variable than magnitude of seasonal pattern



Seasonal vs cyclic

Differences between seasonal and cyclic patterns:
|. Seasonal pattern constant length; cyclic pattern variable length
2. Average length of cycle longer than length of seasonal pattern

3. Magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but

unpredictable in the long term with cyclic data.



Lagged plots and autocorrelation

- Each graph shows yt plotted against yt-k - o2 -
for different values of k.
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Lagged scatterplots

If there is seasonality, the ACF (autocorrelation function) at the seasonal lag (e.g., 12
for monthly data) will be large and positive.

Results for first 9 lags for beer data:

new_production |>
ACF(Beer, lag_max = 9) |>
autoplot()

S e - e =
L e e — -

lag [1Q]

acf




Day 2 Recap



Transformations

- Transformations can be useful if different variations exist in the time series



Transformations

- Transformations can be useful if different variations exist in the time series

Turnover (SAUD)

2000 Jan
Month [1M]



Turnover ($AUD)
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Transformations

- Transformations can be useful if different variations exist in the time series
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Turnover (SAUD)

Transformations

- Transformations can be useful if different variations exist in the time series
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Transformations

- In general, Box-Cox transformations allow us to produce equal variance without
guess and check

food |>
features(Turnover, features = guerrero)

# A tibble: 1 x 1
lambda_guerrero
<dbl>

1 0.0895



Decomposition

- Trends can be decomposed
into seasonal, trend, and
random components
- Trend-cycle: aperiodic changes in
level over time
- Seasonal: periodic changes due
to seasonal factors

- Remainder: noise



Decomposition

- Trends can be decomposed
into seasonal, trend, and
random components
- Trend-cycle: aperiodic changes in
level over time

- Seasonal: periodic changes due
to seasonal factors

- Remainder: noise

components (dcmp) |> autoplot()

STL decomposition

Employed = trend + season_year + remainder
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Decomposition

us_retail_employment |>
autoplot(Employed, color = '"gray") +
autolayer (components(dcmp), trend, color = "#D55E00") +
labs(y = "Persons (thousands)", title = "Total employment in US retail")

Total employment in US retail
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Decomposition

components (dcmp) |> gg_subseries(season_year)
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Further reading

https://otexts.com/fpp3/

Forecasting: Principles and Practice cu.

Rob J Hyndman and George Athanasopoulos

Monash University, Australia
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