Time Series Analysis & Forecasting in R

NY R Conference Workshop by Mitchell O'Hara Recap by Alan Wu and Anjile An

Day I Recap

tidyverts packages

tsibbles (time-series tibbles)

# Key:		Country	[263]			
	Year	Country	GDP	Imports	Exports	Population
	Index	Кеу	Measured	variables		
1	1960	Afghanistan	537777811.	7.02	4.13	8996351
2	1961	Afghanistan	548888896.	8.10	4.45	9166764
3	1962	Afghanistan	546666678.	9.35	4.88	9345868
4	1963	Afghanistan	751111191.	16.9	9.17	9533954
5	1964	Afghanistan	800000044.	18.1	8.89	9731361
6	1965	Afghanistan	1006666638.	21.4	11.3	9938414
7	1966	Afghanistan	1399999967.	18.6	8.57	10152331
8	1967	Afghanistan	1673333418.	14.2	6.77	10372630
9	1968	Afghanistan	1373333367.	15.2	8.90	10604346
10	1969	Afghanistan	1408888922.	15.0	10.1	10854428
# i	15,14	10 more rows				

A tsibble: 15,150 x 6 [1Y]

Other common time indexes:

- Annual
- Quarterly
- Monthly
- Weekly
- Daily
- Sub-daily

Loading a CSV into tsibble

```
prison <- readr::read_csv("data/prison_population.csv") |>
  mutate(Quarter = yearquarter(date)) |>
  select(-date) |>
  as_tsibble(
    index = Quarter,
    key = c(state, gender, legal, indigenous)
  )
```

```
# A tsibble: 3,072 x 6 [1Q]
# Key: state, gender, legal, indigenous [64]
  state gender legal indigenous count Quarter
  <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <qtr>
1 ACT
        Female Remanded ATSI
                                    0 2005 Q1
 2 ACT
        Female Remanded ATSI
                            1 2005 Q2
 3 ACT
       Female Remanded ATSI
                            0 2005 Q3
4 ACT
       Female Remanded ATSI
                                    0 2005 Q4
 5 ACT
        Female Remanded ATSI
                            1 2006 01
        Female Remanded ATSI
 6 ACT
                                     1 2006 02
```

Time series patterns

• Trend: pattern exists when there is a long-term increase or decrease in the data.

Time series patterns

• Seasonal: pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Time series patterns

• Cyclic: pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years).

Seasonal vs cyclic

Differences between seasonal and cyclic patterns:

- I. Seasonal pattern constant length; cyclic pattern variable length
- 2. Average length of cycle longer than length of seasonal pattern
- 3. Magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal vs cyclic

Differences between seasonal and cyclic patterns:

- I. Seasonal pattern constant length; cyclic pattern variable length
- 2. Average length of cycle longer than length of seasonal pattern
- 3. Magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Lagged plots and autocorrelation

- Each graph shows yt plotted against yt-k for different values of k.
- The autocorrelations (AutoCorrelation Function) are the correlations associated with these scatterplots
 - $r_1 = Correlation(y_t, y_{t-1})$
 - r₂ = Correlation(y_t, y_{t-2})
 - etc.

Lagged scatterplots

If there is seasonality, the ACF (autocorrelation function) at the seasonal lag (e.g., 12 for monthly data) will be large and positive.

Results for first 9 lags for beer data:

Day 2 Recap

Square root

Cube root

 In general, Box-Cox transformations allow us to produce equal variance without guess and check

- Trends can be decomposed into seasonal, trend, and random components
 - Trend-cycle: aperiodic changes in level over time
 - Seasonal: periodic changes due to seasonal factors
 - Remainder: noise

- Trends can be decomposed into seasonal, trend, and random components
 - Trend-cycle: aperiodic changes in level over time
 - Seasonal: periodic changes due to seasonal factors
 - Remainder: noise


```
us_retail_employment |>
autoplot(Employed, color = "gray") +
autolayer(components(dcmp), trend, color = "#D55E00") +
labs(y = "Persons (thousands)", title = "Total employment in US retail")
```


Further reading

https://otexts.com/fpp3/

Forecasting: Principles and Practice (3rd ed)

Rob J Hyndman and George Athanasopoulos

Monash University, Australia