
Tips and Tricks for Table 1’sTips and Tricks for Table 1’s
Kat Ho�manKat Ho�man

WCM Biostatistics Computing ClubWCM Biostatistics Computing Club

June 23, 2022June 23, 2022

1 / 151 / 15



Three packages/functions to speed up
your table-making

1. library(tidylog)

2. labelled::set_variable_names()

3. snakecase::to_title_case()

2 / 15



Data set-up
First we'll simulate a patients data set (wide-format demographic characteristics)

# load tidyverse for data creation and set seed for reproducible data
library(tidyverse)
set.seed(7)

# data set of basic patient demographics
patients <-
  tribble(
    ~id, ~admit_dt, ~death_or_discharge_dt,
    ~age, ~sex, ~height, ~weight, ~current_smoker, ~immunosuppressed, 
    100, "2020-03-21 00:10", "2020-05-13 12:10",
64, "Male", 68, 199, "Yes", "No", 
    104, "2020-04-03 12:15", "2020-04-29 18:34",
25, "Male", 72, NA, "Yes", "No", 
    106, "2020-03-28 12:22", "2020-04-05 19:18",
49, "Female", 64, 189, "No", "Yes", 
     107, "2020-04-10 18:15","2020-04-14 19:12",
 88, "Male", 62, 111, "No", "Yes", 
    111, "2020-04-18 00:49", "2020-04-25 19:18",
61, "Female", 67, 156, "No", "Yes"
  ) |>
  # set time zone for date time variables
  mutate_at(vars(ends_with("_dt")), ~as.POSIXct(., tz="America/New_York"))

3 / 15



patients

Wide data set - one row per patient

patients

## # A tibble: 5 × 9
##      id admit_dt            death_or_discharge_dt   age sex    height weight
##   <dbl> <dttm>              <dttm>                <dbl> <chr>   <dbl>  <dbl>
## 1   100 2020-03-21 00:10:00 2020-05-13 12:10:00      64 Male       68    199
## 2   104 2020-04-03 12:15:00 2020-04-29 18:34:00      25 Male       72     NA
## 3   106 2020-03-28 12:22:00 2020-04-05 19:18:00      49 Female     64    189
## 4   107 2020-04-10 18:15:00 2020-04-14 19:12:00      88 Male       62    111
## 5   111 2020-04-18 00:49:00 2020-04-25 19:18:00      61 Female     67    156
## # … with 2 more variables: current_smoker <chr>, immunosuppressed <chr>

4 / 15



Tip #1: Use library(tidylog)!
tidylog is a package that gives additional feedback when you use dplyr functions.
Simply load it at the top of your R script.

library(tidylog)

Then, for example, when you mutate a column, it will tell you how many new and
NA values you created:

patients <-
  patients |>
  # compute BMI
  mutate(bmi = weight / height^2 * 703) |>
  # remove the patients height and weight from the data frame
  select(-height, -weight)

## mutate: new variable 'bmi' (double) with 5 unique values and 20% NA

## select: dropped 2 variables (height, weight)

5 / 15



Using tidylog for joins
I've found it most useful for the feedback when you join two data sets:

patient_labs <-
  patients |>
  left_join(labs)

## Joining, by = "id"
## left_join: added 3 columns (lab_time, lab_name, lab_value)
## > rows only in x 1
## > rows only in y (994)
## > matched rows 629 (includes duplicates)
## > =====
## > rows total 630

Also provides feedback for summarize-related and pivot_* functions

6 / 15



"tidylog is not a package...it's a lifestyle."
-Imaani Easthausen, former WCM biostatistician

Lesson: load tidylog at the top of all your scripts for more e�cient and accurate data
manipulation. Save time the next time you experience this:

7 / 15



Tip #2: Use
labelled::set_variable_labels()

labelled package
labelled is a package to quickly easily relabel variables and values

set_variable_labels() allows you to input a named list of variable names and labels
within dplyr syntax, EX:

library(labelled)
df <- tibble(s1 = c("M", "M", "F"), s2 = c(1, 1, 2)) %>%
    set_variable_labels(s1 = "Sex", s2 = "Yes or No?")

8 / 15



Use labelled to improve your tables
library(gtsummary)
library(gt)
patients |> 
  # select vars of interest for tables
  select(age, sex, bmi, current_smoker, immunosuppressed) |>
  tbl_summary(
     # don't show missing (unknown) values
    missing = "no",
    # make sure all numeric variables are reported as continuous
    type = list(where(is.numeric) ~ "continuous")
  ) |>
  # bold the labels
  bold_labels()

Characteristic N = 51

age 61 (49, 64)
sex

Female 2 (40%)
Male 3 (60%)

bmi 27.3 (23.4, 30.8)
current_smoker 2 (40%)
immunosuppressed 3 (60%)

1 Median (IQR); n (%)

9 / 15



Option 1: use labelled to rename
variables manually
tbl1_vars <- 
  patients |> 
  # select vars of interest for tables
  select(age, sex, bmi, current_smoker, immunosuppressed)

tbl1_vars |> 
  # edit variable names using labelled package
  labelled::set_variable_labels(
    # change all variable labels to "Title Case"
    age = "Age",
    sex = "Sex",
    current_smoker = "Current Smoker",
    immunosuppressed = "Immunosuppressed",
    bmi = "BMI"
    ) |> 
  tbl_summary(
    # make sure all numeric variables are reported as continuous
    type = list(where(is.numeric) ~ "continuous")
  )

10 / 15



Output from Option 1
Characteristic N = 51

Age 61 (49, 64)
Sex

Female 2 (40%)
Male 3 (60%)

BMI 27.3 (23.4, 30.8)
Unknown 1

Current Smoker 2 (40%)
Immunosuppressed 3 (60%)

1 Median (IQR); n (%)

11 / 15



But can we make it easier??
Introducing the snakecase package (Tip #3)

snakecase parses string to a speci�ed case, e.g. snake_case, lowerCamel,
UpperCamel, ALL_CAPS, lowerUPPER, UPPERlower, Sentence case, Title Case

use it to clean up your variable names

snakecase::to_upper_lower_case(names(mtcars))

##  [1] "MPG"  "CYL"  "DISP" "HP"   "DRAT" "WT"   "QSEC" "VS"   "AM"   "GEAR"
## [11] "CARB"

12 / 15



Option 2: add labelling schema from the
snakecase package
tbl1_vars |> 
  # edit variable names using labelled package
  labelled::set_variable_labels(
    # change all variable labels to "Title Case"
    .labels = snakecase::to_title_case(names(tbl1_vars)),
    # change any extra variables that are not title case, like BMI
    bmi = "BMI"
    ) |> 
  tbl_summary(
    # make sure all numeric variables are reported as continuous
    type = list(where(is.numeric) ~ "continuous")
  )

13 / 15



Output from Option 2
Characteristic N = 51

Age 61 (49, 64)
Sex

Female 2 (40%)
Male 3 (60%)

BMI 27.3 (23.4, 30.8)
Current Smoker 2 (40%)
Immunosuppressed 3 (60%)

1 Median (IQR); n (%)

14 / 15



the end!
These tips and a few more in the blog post Lessons learned: my top �ve
coding 'tricks' during the NYC COVID-19 outbreak (www.khstats.com)

15 / 15

https://www.khstats.com/blog/covid/covid-functions/
https://www.khstats.com/

