
Codebook cookbook
A guide to writing a good codebook for data analysis

projects in medicine

1. Introduction

Writing a codebook is an important step in the management of any data analysis project.

The codebook will serve as a reference for the clinical team; it will help newcomers to

the project to rapidly have a flavor of what is at stake and will serve as a communication

tool with the statistical unit.

Indeed, when comes time to perform statistical analyses on your data, the statistician will

be grateful to have a codebook that is readily usable, that is, a codebook that is easy to

turn into code for whichever statistical analysis package he/she will use (SAS, R, Stata,

or other).

2. Data preparation

Whether you enter data in a spreadsheet such as Excel (as is currently popular in

biomedical research) or a database program such as Access, there is much freedom in the

way data can be entered. A few rules, however, should be followed, to make both the data

entry and subsequent data analysis as smooth as possible. A specific example will be

presented in Section 3, but first let‟s look at a few general suggestions.

2.1 Variables names

A unique, unambiguous name should be given to each variable. Variables names MUST

consist of one string only, consisting of letters and — when useful — numbers and

underscores (_). Spaces are not allowed in variables names in most statistical programs,

even if data entry programs like Excel or Access will allow this. It is good practice to

enter variables names at the top of each column. Variables names should be long enough

to be meaningful, but short enough to be easy to handle; variables labels (below) are the

place to clarify what is coded in each variable more substantially.

2.2 Variables labels

A label is a description of the variable, such as a textual description or a reference to the

question number, if the item arises from a questionnaire.

It is important to include a descriptive variable label for each variable in the file. In

practice, these can be added to the existing data base or as a listing in a text file separate

from your data file.

Variables labels are important not only for the statistician to understand the contents of

each data item, but also to the researchers, as the labels will facilitate understanding of

the outputs of the statistical analysis, which they must interpret.

Examples of variable labels will be presented in Section 3.1.1.

2.3 Variables codes

Each categorical variable should have a set of exhaustive, mutually exclusive codes.

These codes should be thoroughly documented in the codebook. Where possible,

standard data codes should be used (e.g. 0=no, 1=yes for yes/no variables): the use of

such standards facilitates the comparison of results across variables, or even across

studies.

Examples of variable codes (sometimes called value labels) will be presented in Section

3.1.2.

2.4 Variables formats

Data should be reduced to numeric codes whenever possible. This avoids the occurrence

of typographical errors in entering literal answers, leading to misinterpretation of two

equivalent answers as being different, and above all greatly facilitates the use of the

variables in statistical models, as most statistical packages cannot use character variables

(that is, variables taking alphanumeric values, e.g. gender=F or M) directly in statistical

models. (In fact, the alphanumeric variables can be used, but only after some

preprocessing that can be time consuming and hence expensive.)

Character entries should be used for descriptive purposes only, e.g. in comment variables

— reason for withdrawal from experiment, reason for non-adherence to medication, etc

— and even in these cases, only when the number of possible answers is large, so that

creating numeric codes for all possibilities becomes too cumbersome.

If for some reason you still prefer to enter alphanumeric values (we can imagine that

sometimes it saves some time and/or is less error-prone at data entry), we will still

suggest a few hints in Section 5 to reduce problems further down the line, at the

statistician‟s end.

2.5 Missing data

In practice, missing data almost always occur in clinical projects; they can arise from

many sources, such as refusal to answer, omission, missing by design, etc. The coding of

missing data often does not receive special attention, which is often benign; indeed, cells

left empty in Excel spreadsheets, for example, will be interpreted as missing data by most

statistical programs.

It is sometimes important however — either in data analysis or when writing reports —

to be able to distinguish between different types of missing data, and that will require

some coding. Furthermore, specifically coding missing values in a data bank makes it

clear that the data item is truly missing, as opposed to an omission by the data entry

person, which is unfortunate but happens in practice; if true missing values were coded,

identifying data entry omissions will be trivial and going back to charts (or

questionnaires) — when possible — will be a foreseeable option to minimize the amount

of missing information.

Section 3.2 will suggest a way to code missing values.

2.6 Date variables

Date variables are often problematic, as there is no uniform standard for date formats.

Therefore, it is important to choose a standard and keep the same date format for each

record (subject, patient) for all date variables in the project.

In Section 3.4, we will suggest a sensible and easy to use date format.

3. Entering your codebook through Excel spreadsheets

Very often, statisticians are sent data files that contain all the information listed in

Section 2, but either through inconvenient codebooks (e.g. written in Word tables that are

hard to access electronically by other programs, leading to “cut and paste” coding which

needlessly duplicates efforts) or data file columns headers. Even though all the

information necessary for data coding and analysis may be included, the information is so

sparse and not easily accessed that it is not readily usable. It is much more efficient to

include all the necessary information in a format that can be read in an automated way.

The examples in Section 3.1 will illustrate a programmer-friendly codebook that remains

easy to prepare.

For example, when SAS — perhaps the most commonly used statistical package for data

coding — reads an Excel file and tries to obtain the variable names from the top row of

the file, it expects a single string (no space, no bracket, no equal sign: nothing but a

word!); consequently, it converts the content of top row cells by replacing unacceptable

characters into underscores, shortens lengthy names and adds numeric suffixes — when

necessary — to keep them unique; this often results in non-optimal and often hard to

comprehend variables names, as shown in the examples in Table 1.

Original Excel column header Variable name, when converted by SAS

ETHORIG (1=Caucasian) 2=Black 3=Asian 4=Natives

ETHORIG__1_Caucasian__2_Black_3_

SLICMAX.LM (total damage score)

SLICMAX_LM__total_damage_score_

Table 1. Choosing friendly variables names.

The two shorter and yet meaningful alternatives ethorig and SlicMax_LM would have

been accepted by SAS without any changes, meaning that the original codebook could be

used when deciphering the outputs from the analyses.

These examples illustrate why keeping variable names simple is always a good idea! The

additional bits of information (e.g. codes 1=Caucasian, 2=Black, etc. for the first

variable, and text „total damage score‟ for the second) should not be entered in variable

names, but rather belong in value labels and variable labels, respectively, as will be

illustrated shortly.

3.1 Labels

3.1.1 Variable labels

Figure 1. Variables names, labels and formats.

The variable labels section (or maybe sheet, if you use Excel and prefer to keep all

information in a single file) of your codebook should contain the following three bits of

information: variables names (identical to that used in the data entry page), format names

and variable labels (see columns A, B and C, in Figure 1). Feel free to enter additional

information in subsequent columns (e.g. measurement units — though measurement units

could also be included in variable label, valid ranges for data, values for missing and

inapplicable data, etc.)

Categorical variables that were entered with numeric codes should be identified as such

through the means of an associated format name (column B, in Figure 1). Each format

can be used more than once; in Figure 1, for example, variables famhx and smoker were

both yes/no variables, thus they were both coded as 0/1 variables, a format called yesno,

yet to be described in the value labels section.

3.1.2 Value labels

The value labels section should consist of three columns: formats names and, for each

format, an exhaustive list of numeric values and corresponding value labels.

Figure 2. Formats names and values labels.

Column headers were added to both values labels and variables labels sheets for the sake

of clarity and ease of reference, but are not in fact absolutely necessary.

The order of the first three columns in each of these sheets, however, should be respected

to ease later programming. Feel free to fill additional columns either for your personal

use or for the statistician‟s team, in which case you will clearly indicate their intended use

by either labeling them properly or by getting in touch with the statistical team.

Your value labels sheet may be conveniently reused in future projects, at least in part (as

some categorical variables tend to be present in most studies, e.g. gender, smoking,

yes/no variables, etc.).

3.2 Coding missing and inapplicable data

It is not absolutely mandatory to code missing values, as pointed out in Section 2.5.

Nevertheless, such codes should be used as much as possible (it is a trade-off between

work load and data bank completeness and clarity, the latter taking precedence whenever

feasible).

When coded, missing values for categorical variables should be identified by a code

radically different from non missing values: for example, a variable that would be coded

as 0=‟not at all‟, 1=‟a little bit‟, …, 5=‟very much‟, a sensible choice would be to take a

negative value, e.g. -9.

Similarly, for continuous variables (e.g. age as expressed in fractional years), impossible

values should be used, diminishing the possibility of erroneously entering such codes:

-88, -99, -999 are values that are often used. The choice is yours, but whatever values

you choose to use for inapplicable data should be documented in your codebook (see

columns E and F, Figure 1).

Note also that inapplicable (e.g., pregnancy related data among males) data should be

coded differently from missing data. Codes for missing and inapplicable data can be

entered in the variable labels worksheet for unformatted variables (e.g. age) or in the

value labels worksheet if all variables using a given format were identically coded —

which is highly recommended, of course!

4. Entering date variables

Date variables are often the cause of nightmares! Indeed, there is no standard way to

enter dates; some prefer mm/dd/yyyy, as in 02/28/2007, others prefer dd/mm/yyyy, as in

28/02/2007, and enter their data accordingly, often without telling Excel in which format

they are entering the corresponding variable. Excel is clever enough to recognize it‟s a

date, but by default Excel will interpret them as dd/mm/yyyy.

Consequently, if you enter the dates April 7, 2006, August 12, 2004, March 1
st
, 2005,

December 6, 2006, May 15, 2006, May 10, 2005 as in Figure 3, it looks like Excel

accepts and understands all the dates you have entered. However, the value in row 5

being left-aligned while others were right-aligned should ring a warning bell!

Indeed, as Excel expects dates in the format

dd/mm/yyyy (by default), it accepted the

first four values (but misinterpreted them

as July 4, 2006, December 8, 2004, January

3
rd

, 2005, June 12, 2006) and the date on

row 5 could not be read as a date (month

15?!?!?), and was therefore aligned to the

left and recorded as a string rather than a

date!

Figure 3. A date variable with incorrect

date format.

To avoid such misinterpretations — which will remain problematic when your statistician

reads it with a statistical software package — we highly suggest that prior to entering any

dates, you indicate (in Excel or Access, for example) a format date to be used for the

column where you intend to enter the dates. Furthermore, we recommend that you use a

format that is unequivocal, e.g. the format dd-mon-yyy, that is, a format where the month

will be displayed in words; it will not be more work for you as you can still enter your

dates by entering month as numeric and using slashes between day & month and month

& year: every time you enter a new date, Excel will turn it into the chosen format, and

you will see right away whether it was correctly interpreted or not! Easy to use and much

less error-prone than other formats! The best of all worlds!

To use that format, click the cell on top of the column, browse through Format, Cells,

click Date in the “Category:” list box and finally click the format “14-mar-01” (or

anything alike) in the “Type:” list box.

4.1 Validating date values

Avoiding date entry errors in Excel is made easier with the Data Validation tool.

If you enter your data in an Excel worksheet, click the top cell of the column where you

plan to enter a date and follow these steps:

1. On the Data menu, click Validation, and then click the Settings tab.

2. In the Allow box, click Date.

3. Enter minimum and maximum feasible dates.

5. Useful Excel tips: AutoComplete and Pick from List

As announced in Section 2.4, we now suggest a few ways to enter alphanumeric variables

(in Excel) that will reduce the risk of typographical errors and subsequent inconveniences

(or worse!).

An Excel feature that makes entering data easier is AutoComplete. With this tool, all you

need to do is to type in the first letters or digits of an entry into a cell; Excel will

automatically scan the surrounding values in that column and complete the entry for you

if it finds a like value. If you want to accept AutoComplete‟s suggestion, simply press

Enter, Tab, or any of the arrow keys. If the AutoComplete’s suggestion is not what you

need, keep entering the desired text, or use the delete key to cut off the letters that it

suggested. You can toggle the AutoComplete feature on and off by choosing Options

from the Tools menu and clicking on the Edit tab. Clicking in the Enable

AutoComplete for Cell Values checkbox will allow you to turn AutoComplete on and

off.

Pick From List could also be useful. It allows you to access a range of values that have

already been entered into a given column and to pick a value from that list.

Right-click on the next cell to be filled and choose Pick From List... from the pop-up

menu: it will produce a drop-down list below the cell showing the values already entered

in the column; click a value to select it or type the Esc button to close the list.

A categorical variable can also be entered though a combo box. This works similarly to

Pick From List, except that values offered in the list will come from a pre-determined

list, not from the values already entered into the column. Choose the Microsoft Excel

Help item from the Help menu, and enter “Combo box” in the text box; in the list of

items found by the search tool, click the item “Enter data in cell from a list you

specify” and follow the instructions.

6. Ready-to-use information

This is a minor but still noteworthy point: sometimes, one tries to compress information

into as few variables as possible. Splitting information into more than one variable,

however, is sometimes more natural and makes data entry easier (not to mention easier

for data coding and analysis!).

Consider the example below, where a questionnaire was administered several times to

each patient, with a variable called admin_time indicating the time of questionnaire

administration for the corresponding record. The variable illustrated in the worksheet in

Figure 4 contains all the information, but in a way that is not readily usable by the

programmer.

Figure 4. A variable containing information difficult to access

through programming.

A good programmer will still be able to get the day and week numbers relatively easily

from the lines 2 to 4: indeed, one would take the number after the string „day‟ as the day

number and the number after „week‟ as the week number. Nothing impossible to deal

with here! But consider now the 5
th

 row, which unfortunately includes a typo (week was

misspelled). The algorithm discussed above would fail in finding the word „week‟, and

week number would thus not be read!

The lack of a standard (e.g., always day first and week second, in this example) by itself

is a good point against entering non numeric data, as suggested in Section 2 — not

accounting for the augmented risk of typos. In this example, entering time of

questionnaire administration into two columns, as shown in Figure 5, does better, both in

terms of ease of data entry and statistical coding.

Figure 5. Information made easy to read and interpret.

7. A program to convert Excel codebook file to SAS code

An executable program to convert Excel codebook files to SAS code is available at

http://www.med.mcgill.ca/epidemiology/Joseph/PBelisle/ExcelCodebook2SasCode.html

8. Final words

We believe that following these guidelines will greatly facilitate data entry and

subsequent statistical analyses, not to mention cutting down on errors, which can often go

undetected through the life of a project. Of course, we have presented our preferences,

and others may have different opinions or habits. Therefore it is always best to consult

with your statistical group prior to beginning any data base programming, and to devise

your data entry system ahead of time in collaboration with them.

Nevertheless, we hope that you find this codebook cookbook useful, and welcome your

comments for improvements.

Authors: Patrick Bélisle and Lawrence Joseph

Department of Clinical Epidemiology / McGill University Health Centre

Montréal, Québec CANADA

patrick.belisle@rimuhc.ca

http://www.med.mcgill.ca/epidemiology/Joseph/PBelisle

http://www.med.mcgill.ca/epidemiology/Joseph/

mailto:patrick.belisle@rimuhc.ca

